首页 正文

Disability and health journal. 2025 May 24:101888. doi: 10.1016/j.dhjo.2025.101888 Q13.72024

Applying NLP methods to code functional performance in electronic health records using the international classification of functioning, disability, and health

应用自然语言处理方法使用国际功能、残疾和健康分类对电子健康记录中的功能表现进行编码 翻译改进

Elizabeth Marfeo  1, Maryanne Sacco  2, Jona Camacho Maldonado  2, Kathleen Coale  2, Rafael Jimenez Silva  2, Rebecca Parks  2, Elizabeth K Rasch  2

作者单位 +展开

作者单位

  • 1 Department of Community Health, Tufts University, Medford, MA, USA; National Institutes of Health Rehabilitation Medicine Department, Bethesda, MD, USA. Electronic address: elizabeth.marfeo@tufts.edu.
  • 2 National Institutes of Health Rehabilitation Medicine Department, Bethesda, MD, USA.
  • DOI: 10.1016/j.dhjo.2025.101888 PMID: 40442018

    摘要 中英对照阅读

    Background: Clinical records often provide information on a person's functioning (activities), reflecting their lived experience of health. Automated extraction using clinical natural language processing (cNLP) can assist providers with clinical decision-making, treatment planning, predicting health outcomes, and informing health care policy.

    Objective: We aim to (1) describe the applicability of the World Health Organization's International Classification of Functioning, Disability and Health (ICF) to development of cNLP tools, (2) identify key challenges in application of the ICF, and (3) offer recommendations to improve this process.

    Methods: Apply the ICF as a framework to manually annotate free-text electronic health records (EHRs) from the United States (US) Social Security Administration (SSA) and the National Institutes of Health (NIH) Clinical Center using cNLP tools for each activity domain of the ICF.

    Results: Conceptual and content issues were encountered within four primary domains: Mobility, Self-Care and Domestic Life, Interpersonal Interactions and Relationships, and Communication and Cognition. Subsequent recommendations for ICF updates were provided.

    Conclusion: Overall, the ICF performed well applied to a use case for which it was not originally developed (SSA disability determination), which assessed its effectiveness, and highlighted both strengths and weaknesses between ICF conceptualizations and documented real-world functioning observations. This work provides a foundation upon which to improve the ICF and integrate it with cNLP models in order to give clinicians, researchers, and policy makers robust informatics tools that quickly identify functioning information for clinical decision and policy making purposes.

    Keywords: Disability assessment; Electronic health records; Natural language processing.

    Keywords:natural language processing; electronic health records

    背景:临床记录通常提供有关个人功能(活动)的信息,反映了他们对健康的亲身经历。使用临床自然语言处理(cNLP)的自动化提取可以帮助医疗服务提供商进行临床决策、治疗计划制定、预测健康结果以及为卫生政策提供信息。

    目的:我们旨在 (1) 描述世界卫生组织《国际功能、残疾和健康分类》(ICF) 在开发cNLP工具方面的适用性,(2) 识别应用ICF的关键挑战,并 (3) 提出改进建议。

    方法:将ICF作为框架应用于手动注释来自美国社会安全局(SSA)和国立卫生研究院(NIH)临床中心的自由文本电子健康记录(EHR),使用cNLP工具对ICF中的每个活动领域进行标注。

    结果:在四个主要领域(移动性、自我照顾和个人生活、人际互动和关系以及交流和认知)中遇到了概念性和内容方面的问题。随后提供了针对ICF更新的建议。

    结论:总体而言,将ICF应用于其最初并未开发的用例 (SSA残疾判定) 中表现良好,这评估了它的有效性,并且突显了ICF概念与记录的实际功能观察之间的优点和缺点。这项工作为改进ICF并将其整合到cNLP模型中奠定了基础,从而为临床医生、研究人员和政策制定者提供强大的信息学工具,以便快速识别用于临床决策和政策制定的功能信息。

    关键词:残疾评估;电子健康记录;自然语言处理。

    关键词:自然语言处理; 电子健康记录; 国际功能分类

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Disability and health journal. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Disability and health journal

    缩写:DISABIL HEALTH J

    ISSN:1936-6574

    e-ISSN:1876-7583

    IF/分区:3.7/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Applying NLP methods to code functional performance in electronic health records using the international classification of functioning, disability, and health