首页 正文

International journal of computer assisted radiology and surgery. 2025 May 11. doi: 10.1007/s11548-025-03388-z Q32.32024

Enhancing segmentation accuracy of the common iliac vein in OLIF51 surgery in intraoperative endoscopic video through gamma correction: a deep learning approach

通过伽马校正增强OLIF51手术术中内窥镜视频中髂总静脉分割精度的深度学习方法 翻译改进

Kaori Yamamoto  1, Reoto Ueda  1  2, Kazuhide Inage  3, Yawara Eguchi  3  4, Miyako Narita  3, Yasuhiro Shiga  3, Masahiro Inoue  3, Noriyasu Toshi  3, Soichiro Tokeshi  3, Kohei Okuyama  3, Shuhei Ohyama  3, Satoshi Maki  3  5, Takeo Furuya  3, Seiji Ohtori  3, Sumihisa Orita  6  7  8

作者单位 +展开

作者单位

  • 1 Department of Medical Engineering, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
  • 2 Faculty of Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
  • 3 Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
  • 4 Department of Orthopaedic Surgery, Shimoshizu National Hospital, 934-5, Shikawatashi, Yotsukaido, Chiba, 284-0003, Japan.
  • 5 Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
  • 6 Department of Medical Engineering, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan. sorita@chiba-u.jp.
  • 7 Department of Orthopaedic Surgery, Shimoshizu National Hospital, 934-5, Shikawatashi, Yotsukaido, Chiba, 284-0003, Japan. sorita@chiba-u.jp.
  • 8 Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan. sorita@chiba-u.jp.
  • DOI: 10.1007/s11548-025-03388-z PMID: 40349282

    摘要 中英对照阅读

    Purpose: The principal objective of this study was to develop and evaluate a deep learning model for segmenting the common iliac vein (CIV) from intraoperative endoscopic videos during oblique lateral interbody fusion for L5/S1 (OLIF51), a minimally invasive surgical procedure for degenerative lumbosacral spine diseases. The study aimed to address the challenge of intraoperative differentiation of the CIV from surrounding tissues to minimize the risk of vascular damage during the surgery.

    Methods: We employed two convolutional neural network (CNN) architectures: U-Net and U-Net++ with a ResNet18 backbone, for semantic segmentation. Gamma correction was applied during image preprocessing to improve luminance contrast between the CIV and adjacent tissues. We used a dataset of 614 endoscopic images from OLIF51 surgeries for model training, validation, and testing.

    Results: The U-Net++/ResNet18 model outperformed, achieving a Dice score of 0.70, indicating superior ability in delineating the position and shape of the CIV compared to the U-Net/ResNet18 model, which achieved a Dice score of 0.59. Gamma correction increased the differentiation between the CIV and the artery, improving the Dice score from 0.44 to 0.70.

    Conclusion: The findings demonstrate that deep learning models, especially the U-Net++ with ResNet18 enhanced by gamma correction preprocessing, can effectively segment the CIV in intraoperative videos. This approach has the potential to significantly improve intraoperative assistance and reduce the risk of vascular injury during OLIF51 procedures, despite the need for further research and refinement of the model for clinical application.

    Keywords: Deep learning; Gamma correction; Oblique lateral lumbar interbody fusion (OLIF) 51; Preprocessing; Segmentation; Vein segmentation.

    Keywords:common iliac vein; segmentation accuracy; olif51 surgery; gamma correction; deep learning

    目的: 本研究的主要目标是开发和评估一种深度学习模型,用于在L5/S1侧方斜外侧椎间融合术(OLIF51)的手术内窥镜视频中分割出髂总静脉(CIV),这是一种用于治疗退行性腰骶椎疾病的微创手术。该研究旨在解决手术过程中区分CIV和周围组织的难题,以减少手术期间血管损伤的风险。

    方法: 我们采用了两种卷积神经网络(CNN)架构:U-Net和带有ResNet18骨干的U-Net++进行语义分割。在图像预处理过程中应用了伽马校正,以提高CIV与相邻组织之间的亮度对比度。我们使用了一组614张来自OLIF51手术的内窥镜图片的数据集来进行模型训练、验证和测试。

    结果: U-Net++/ResNet18模型优于U-Net/ResNet18模型,Dice分数为0.70,表明其在界定CIV的位置和形状方面的能力更强。U-Net/ResNet18模型的Dice分数为0.59。伽马校正增加了CIV与动脉之间的区分度,将Dice分数从0.44提高到了0.70。

    结论: 研究结果表明,深度学习模型(特别是通过伽马校正预处理增强的带有ResNet18骨干的U-Net++)能够有效地在手术视频中分割CIV。这一方法有望显著提高术中的辅助作用,并减少OLIF51过程中血管损伤的风险,尽管还需要进一步的研究和对该模型进行优化以适用于临床应用。

    关键词: 深度学习;伽马校正;侧方斜外侧腰椎椎间融合(OLIF)51;预处理;分割;静脉分割。

    关键词:-common-iliac-静脉; 分割精度; olif51手术; gamma校正; 深度学习

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Enhancing segmentation accuracy of the common iliac vein in OLIF51 surgery in intraoperative endoscopic video through gamma correction: a deep learning approach