首页 正文

Techniques in coloproctology. 2025 May 10;29(1):113. doi: 10.1007/s10151-025-03139-x Q32.72024

Radiomics prediction of surgery in ulcerative colitis refractory to medical treatment

放射组学预测溃疡性结肠炎药物治疗无效患者的手术风险 翻译改进

K Sakamoto  1, K Okabayashi  2, R Seishima  1, K Shigeta  1, H Kiyohara  3, Y Mikami  3, T Kanai  3, Y Kitagawa  1

作者单位 +展开

作者单位

  • 1 Department of Surgery, Keio University School of Medicine, 35 Shinano-Machi Shinjuku-Ku, Tokyo, 1608582, Japan.
  • 2 Department of Surgery, Keio University School of Medicine, 35 Shinano-Machi Shinjuku-Ku, Tokyo, 1608582, Japan. okabayashikoji@gmail.com.
  • 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
  • DOI: 10.1007/s10151-025-03139-x PMID: 40347388

    摘要 中英对照阅读

    Background: The surgeries in drug-resistant ulcerative colitis are determined by complex factors. This study evaluated the predictive performance of radiomics analysis on the basis of whether patients with ulcerative colitis in hospital were in the surgical or medical treatment group by discharge from hospital.

    Methods: This single-center retrospective cohort study used CT at admission of patients with US admitted from 2015 to 2022. The target of prediction was whether the patient would undergo surgery by the time of discharge. Radiomics features were extracted using the rectal wall at the level of the tailbone tip of the CT as the region of interest. CT data were randomly classified into a training cohort and a validation cohort, and LASSO regression was performed using the training cohort to create a formula for calculating the radiomics score.

    Results: A total of 147 patients were selected, and data from 184 CT scans were collected. Data from 157 CT scans matched the selection criteria and were included. Five features were used for the radiomics score. Univariate logistic regression analysis of clinical information detected a significant influence of severity (p < 0.001), number of drugs used until surgery (p < 0.001), Lichtiger score (p = 0.024), and hemoglobin (p = 0.010). Using a nomogram combining these items, we found that the discriminatory power in the surgery and medical treatment groups was AUC 0.822 (95% confidence interval (CI) 0.841-0.951) for the training cohort and AUC 0.868 (95% CI 0.729-1.000) for the validation cohort, indicating a good ability to discriminate the outcomes.

    Conclusions: Radiomics analysis of CT images of patients with US at the time of admission, combined with clinical data, showed high predictive ability regarding a treatment strategy of surgery or medical treatment.

    Keywords: Machine learning; Prediction; Radiomics; Ulcerative colitis; Ulcerative colitis surgery.

    Keywords:radiomics prediction; surgery; ulcerative colitis医疗治疗

    背景: 药物抵抗性溃疡性结肠炎的手术决策涉及复杂的因素。本研究评估了基于影像组学分析预测医院收治的溃疡性结肠炎患者在出院时是否会接受手术或药物治疗的预测性能。

    方法: 该单中心回顾性队列研究使用了2015年至2022年间入院的UC患者的CT影像。预测目标是患者在出院前是否需要进行手术。影像组学特征的提取以CT图像中尾骨尖端水平直肠壁为感兴趣区域。将CT数据随机分为训练队列和验证队列,并使用训练队列通过LASSO回归建立计算影像组学评分的公式。

    结果: 共有147名患者入选,收集了184次CT扫描的数据。其中157次CT扫描符合选择标准并被纳入分析。影像组学评分使用了五个特征。单变量逻辑回归分析临床信息发现严重程度(P

    结论: 入院时对UC患者CT图像进行的影像组学分析,结合临床数据,显示出关于手术或药物治疗策略的高度预测能力。

    关键词: 机器学习;预测;影像组学;溃疡性结肠炎;溃疡性结肠炎手术。

    关键词:影像组学预测; 手术; 溃疡性结肠炎; 医疗治疗; 难治性

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Techniques in coloproctology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Techniques in coloproctology

    缩写:TECH COLOPROCTOL

    ISSN:1123-6337

    e-ISSN:1128-045X

    IF/分区:2.7/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Radiomics prediction of surgery in ulcerative colitis refractory to medical treatment