首页 正文

International journal of computer assisted radiology and surgery. 2025 May 10. doi: 10.1007/s11548-025-03394-1 Q32.32024

Improving neck ultrasound image retrieval using intra-sweep representation learning

基于回扫表示学习的颈部超声图像检索方法研究 翻译改进

Wanwen Chen  1, Adam Schmidt  2  3, Eitan Prisman  4, Septimiu E Salcudean  2

作者单位 +展开

作者单位

  • 1 Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada. wanwenc@ece.ubc.ca.
  • 2 Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada.
  • 3 Intuitive Surgical Inc., Sunnyvale, CA, USA.
  • 4 Division of Otolaryngology, Department of Surgery, The University of British Columbia, Vancouver, BC, Canada.
  • DOI: 10.1007/s11548-025-03394-1 PMID: 40347320

    摘要 中英对照阅读

    Purpose: Intraoperative ultrasound (US) can enhance real-time visualization in transoral robotic surgery (TORS) and improve the safety of the surgery. To develop a US guidance system for TORS, US probe localization and US-preoperative image registration are essential. Image retrieval has the potential to solve these two problems in the same framework, and learning a discriminative US representation is key to successful image retrieval.

    Methods: We propose a self-supervised contrastive learning approach to match intraoperative US views to a preoperative image database. We introduce a novel contrastive learning strategy that leverages intra-sweep similarity and US probe location to improve feature encoding. Additionally, our model incorporates a flexible threshold to reject unsatisfactory matches.

    Results: Our method achieves 92.30% retrieval accuracy on simulated data and outperforms state-of-the-art temporal-based contrastive learning approaches. We also test our approach on real patient data with preoperative US-CT registration to show the feasibility of the proposed US probe localization system, despite tissue deformation due to tongue retraction.

    Conclusion: Our contrastive learning method, which utilizes intra-sweep similarity and US probe location, enhances US image representation learning. We also demonstrate the feasibility of using our image retrieval method to provide neck US localization on real patients US after tongue retraction. Total number of words: 2414 words.

    Keywords: Contrastive learning; Image retrieval; Transoral robotic surgery; US guidance.

    Keywords:neck ultrasound; image retrieval; representation learning

    目的: 术中超声(US)可以增强经口机器人手术(TORS)中的实时可视化,并提高手术的安全性。为了开发用于TORS的超声引导系统,需要进行超声探头定位和术前图像配准。图像检索有可能在同一框架内解决这两个问题,而学习具有区分性的超声表示是成功实现这一目标的关键。

    方法: 我们提出了一种自监督对比学习方法来匹配术中超声视图与术前图像数据库中的内容。我们引入了一种新的对比学习策略,利用同一次扫描内的相似性和超声探头位置来改进特征编码。此外,我们的模型还集成了一个灵活的阈值以拒绝不满意的结果。

    结果: 在模拟数据上,我们的方法实现了92.30%的检索准确率,并且优于基于时间的方法的对比学习方法。我们还在带有术前US-CT配准的真实患者数据上测试了我们的方法,以证明所提出的超声探头定位系统的可行性,尽管由于舌部回缩导致组织变形。

    结论: 我们的利用同一次扫描内相似性和超声探头位置的对比学习方法增强了超声图像表示的学习。我们还展示了使用我们的图像检索方法在真实患者US后提供颈部超声定位的可能性,即使是在舌回缩的情况下。

    关键词: 对比学习;图像检索;经口机器人手术;超声引导。

    关键词:颈部超声; 图像检索

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Improving neck ultrasound image retrieval using intra-sweep representation learning