首页 正文

International journal of computer assisted radiology and surgery. 2025 May 9. doi: 10.1007/s11548-025-03370-9 Q32.32024

Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography

基于快捷学习的光声层析成像深度学习模型性别偏见研究 翻译改进

Marcel Knopp  1  2, Christoph J Bender  3  4, Niklas Holzwarth  3  5, Yi Li  6, Julius Kempf  6, Milenko Caranovic  6, Ferdinand Knieling  7, Werner Lang  6, Ulrich Rother  6, Alexander Seitel  3  8, Lena Maier-Hein  3  5  4  8, Kris K Dreher  3  9

作者单位 +展开

作者单位

  • 1 Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. marcel.knopp@dkfz-heidelberg.de.
  • 2 Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. marcel.knopp@dkfz-heidelberg.de.
  • 3 Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • 4 Medical Faculty, Heidelberg University, Heidelberg, Germany.
  • 5 Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.
  • 6 Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • 7 Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, FAU, Erlangen, Germany.
  • 8 National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany.
  • 9 Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
  • DOI: 10.1007/s11548-025-03370-9 PMID: 40343639

    摘要 中英对照阅读

    Purpose: Shortcut learning has been identified as a source of algorithmic unfairness in medical imaging artificial intelligence (AI), but its impact on photoacoustic tomography (PAT), particularly concerning sex bias, remains underexplored. This study investigates this issue using peripheral artery disease (PAD) diagnosis as a specific clinical application.

    Methods: To examine the potential for sex bias due to shortcut learning in convolutional neural network (CNNs) and assess how such biases might affect diagnostic predictions, we created training and test datasets with varying PAD prevalence between sexes. Using these datasets, we explored (1) whether CNNs can classify the sex from imaging data, (2) how sex-specific prevalence shifts impact PAD diagnosis performance and underdiagnosis disparity between sexes, and (3) how similarly CNNs encode sex and PAD features.

    Results: Our study with 147 individuals demonstrates that CNNs can classify the sex from calf muscle PAT images, achieving an AUROC of 0.75. For PAD diagnosis, models trained on data with imbalanced sex-specific disease prevalence experienced significant performance drops (up to 0.21 AUROC) when applied to balanced test sets. Additionally, greater imbalances in sex-specific prevalence within the training data exacerbated underdiagnosis disparities between sexes. Finally, we identify evidence of shortcut learning by demonstrating the effective reuse of learned feature representations between PAD diagnosis and sex classification tasks.

    Conclusion: CNN-based models trained on PAT data may engage in shortcut learning by leveraging sex-related features, leading to biased and unreliable diagnostic predictions. Addressing demographic-specific prevalence imbalances and preventing shortcut learning is critical for developing models in the medical field that are both accurate and equitable across diverse patient populations.

    Keywords: Peripheral artery disease (PAD); Photoacoustic tomography (PAT); Sex Bias in AI; Shortcut learning.

    Keywords:deep learning; photoacoustic tomography; sex bias

    目的: 快捷学习已被确定为医学影像人工智能(AI)算法不公平的来源,但其对光声断层扫描(PAT),特别是性别偏见的影响仍然研究不足。本研究使用外周动脉疾病(PAD)诊断作为具体的临床应用来调查这一问题。

    方法: 为了考察由于快捷学习导致卷积神经网络(CNNs)的潜在性别偏见,并评估这种偏见如何影响诊断预测,我们创建了不同性别间PAD患病率不同的训练和测试数据集。使用这些数据集,我们探索了以下问题:(1)CNN是否可以从影像数据中分类性别;(2)性别特异性患病率的变化如何影响PAD的诊断性能以及两性之间的漏诊差异;(3)CNN编码性别特征与PAD特征的方式是否相似。

    结果: 我们的研究涉及147名个体,结果显示CNN可以从小腿肌肉PAT图像中分类性别,达到了AUROC为0.75的水平。对于PAD诊断,基于不平衡性别特异性疾病患病率数据训练出的模型,在应用于平衡测试集时性能显著下降(最高达0.21 AUROC)。此外,训练数据中性别特异性患病率更大的不均衡加剧了两性之间的漏诊差异。最后,我们通过展示在PAD诊断和性别分类任务之间有效重用学习到的特征表示来识别快捷学习的证据。

    结论: 基于PAT数据训练的CNN模型可能会利用与性别相关的特征进行快捷学习,导致有偏见且不可靠的诊断预测。解决人口统计学特定的患病率不平衡并防止快捷学习对于在医学领域开发准确且公平地服务于多样化患者群体的模型至关重要。

    关键词: 外周动脉疾病(PAD);光声断层扫描(PAT);AI中的性别偏见;快捷学习。

    关键词:深度学习; 声光层析成像; 性别偏见

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography