首页 正文

International journal of computer assisted radiology and surgery. 2025 May 8. doi: 10.1007/s11548-025-03382-5 Q32.32024

A multi-model deep learning approach for the identification of coronary artery calcifications within 2D coronary angiography images

基于二维冠脉造影图像的冠状动脉钙化病变多模态深度学习检测方法 翻译改进

Edoardo De Rose  1, Ciro Benito Raggio  2, Ahmad Riccardo Rasheed  3, Pierangela Bruno  4, Paolo Zaffino  5, Salvatore De Rosa  3, Francesco Calimeri  4  6, Maria Francesca Spadea  7

作者单位 +展开

作者单位

  • 1 Department of Mathematics and Computer Science, University of Calabria, Pietro Bucci, 87036, Rende, Calabria, Italy. edoardo.derose@unical.it.
  • 2 Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 1, 76131, Karlsruhe, Baden-Württemberg, Germany. ciro.raggio@kit.edu.
  • 3 Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Calabria, Italy.
  • 4 Department of Mathematics and Computer Science, University of Calabria, Pietro Bucci, 87036, Rende, Calabria, Italy.
  • 5 Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Calabria, Italy.
  • 6 DLVSystem Srl, Viale della Resistenza 19/C, 87036, Rende, Calabria, Italy.
  • 7 Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 1, 76131, Karlsruhe, Baden-Württemberg, Germany.
  • DOI: 10.1007/s11548-025-03382-5 PMID: 40341465

    摘要 中英对照阅读

    Purpose: Identifying and quantifying coronary artery calcification (CAC) is crucial for preoperative planning, as it helps to estimate both the complexity of the 2D coronary angiography (2DCA) procedure and the risk of developing intraoperative complications. Despite the relevance, the actual practice relies upon visual inspection of the 2DCA image frames by clinicians. This procedure is prone to inaccuracies due to the poor contrast and small size of the CAC; moreover, it is dependent on the physician's experience. To address this issue, we developed a workflow to assist clinicians in identifying CAC within 2DCA using data from 44 image acquisitions across 14 patients.

    Methods: Our workflow consists of three stages. In the first stage, a classification backbone based on ResNet-18 is applied to guide the CAC identification by extracting relevant features from 2DCA frames. In the second stage, a U-Net decoder architecture, mirroring the encoding structure of the ResNet-18, is employed to identify the regions of interest (ROI) of the CAC. Eventually, a post-processing step refines the results to obtain the final ROI. The workflow was evaluated using a leave-out cross-validation.

    Results: The proposed method outperformed the comparative methods by achieving an F1-score for the classification step of 0.87 (0.77 - 0.94) (median ± quartiles), while for the CAC identification step the intersection over minimum (IoM) was 0.64 (0.46 - 0.86) (median ± quartiles).

    Conclusion: This is the first attempt to propose a clinical decision support system to assist the identification of CAC within 2DCA. The proposed workflow holds the potential to improve both the accuracy and efficiency of CAC quantification, with promising clinical applications. As future work, the concurrent use of multiple auxiliary tasks could be explored to further improve the segmentation performance.

    Keywords: Clinical decision support system; Coronary angiography; Coronary artery calcification; Deep learning.

    Keywords:coronary artery calcifications; coronary angiography images; deep learning approach

    目的: 识别和量化冠状动脉钙化(CAC)对于术前规划至关重要,因为它有助于估计二维冠状动脉造影(2DCA)程序的复杂性和手术过程中发生并发症的风险。尽管相关性很高,但实际操作依赖于临床医生对2DCA图像帧进行视觉检查。由于CAC对比度差且尺寸小,该过程容易出现不准确的情况;此外,还取决于医师的经验。为了解决这个问题,我们开发了一种工作流程,利用14名患者中44次图像采集的数据来帮助临床医生在2DCA中识别CAC。

    方法: 我们的工作流包括三个阶段。第一阶段应用基于ResNet-18的分类骨干网络从2DCA帧中提取相关特征,以指导CAC识别。第二阶段采用与ResNet-18编码结构镜像对称的U-Net解码架构来识别CAC的兴趣区域(ROI)。最终,在后处理步骤中细化结果以获得最终的ROI。该工作流通过留一交叉验证进行评估。

    结果: 所提出的方法在分类步骤中的F1得分达到了0.87(四分位数范围为0.77至0.94),而在CAC识别步骤中,交集与最小值的比值(IoM)为0.64(四分位数范围为0.46至0.86)。相比之下,该方法优于比较方法。

    结论: 这是首次尝试提出一种临床决策支持系统来协助在2DCA中识别CAC。所提出的流程有可能提高CAC量化方面的准确性和效率,并具有潜在的临床应用前景。在未来的工作中,可以探索同时使用多个辅助任务以进一步改善分割性能。

    关键词: 临床决策支持系统;冠状动脉造影;冠状动脉钙化;深度学习。

    关键词:冠状动脉钙化; 冠状动脉造影图像; 深度学习方法

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    A multi-model deep learning approach for the identification of coronary artery calcifications within 2D coronary angiography images