首页 正文

Assistive technology : the official journal of RESNA. 2025 Apr 23:1-9. doi: 10.1080/10400435.2025.2490632 Q32.52024

Can foundation models reliably identify spatial hazards? A case study on curb segmentation

基础模型能否可靠地识别空间隐患?一个路缘分割案例研究 翻译改进

Diwei Sheng  1, Giles Hamilton-Fletcher  2  3, Mahya Beheshti  2  4, Chen Feng  1  4, John-Ross Rizzo  2  3  4  5  6  7  8

作者单位 +展开

作者单位

  • 1 Department of Computer Science and Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA.
  • 2 Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, New York, USA.
  • 3 Department of Mechanical & Aerospace Eng, NYU Tandon School of Engineering, New York, New York, USA.
  • 4 Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, New York, USA.
  • 5 Department of Ophthalmology, NYU Langone Health, New York, New York, USA.
  • 6 Department of Rehabilitation Medicine, NYU Langone Health, New York, New York, USA.
  • 7 Department of Neurology, NYU Langone Health, New York, USA.
  • 8 Institute for Excellence in Health Equity, New York University Grossman School of Medicine, New York, New York, USA.
  • DOI: 10.1080/10400435.2025.2490632 PMID: 40267103

    摘要 中英对照阅读

    Curbs serve as vital borders that delineate safe pedestrian zones from potential vehicular traffic hazards. Curbs also represent a primary spatial hazard during dynamic navigation with significant stumbling potential. Such vulnerabilities are particularly exacerbated for persons with blindness and low vision (PBLV). Accurate visual-based discrimination of curbs is paramount for assistive technologies that aid PBLV with safe navigation in urban environments. Herein, we investigate the efficacy of curb segmentation for foundation models. We introduce the largest curb segmentation dataset to date to benchmark leading foundation models. Our results show that state-of-the-art foundation models face significant challenges in curb segmentation. This is due to their low precision and recall with poor performance distinguishing curbs from curb-like objects or non-curb areas, such as sidewalks. In addition, the best-performing model averaged a 3.70-s inference time, underscoring problems in providing real-time assistance. In response, we propose solutions including filtered bounding box selections to achieve more accurate curb segmentation. Overall, despite the immediate flexibility of foundation models, their application for practical assistive technology applications still requires refinement. This research highlights the critical need for specialized datasets and tailored model training to address navigation challenges for PBLV and underscores implicit weaknesses in foundation models.

    Keywords: Assistive technology; curb segmentation; foundation model; outdoor navigation; visually impaired.

    Keywords:foundation models; spatial hazards; curb segmentation

    路缘石作为重要的边界,区分了行人安全区域和潜在的车辆交通危险。然而,在动态导航中,路缘石也代表了一个主要的空间障碍,并且有很高的绊倒风险。这种脆弱性尤其加剧了视障人士(PBLV)的问题。准确地通过视觉识别路缘石对于辅助技术来说至关重要,这些技术可以帮助视障人士在城市环境中安全导航。在此,我们研究了基础模型在路缘石分割方面的有效性。我们引入了迄今为止最大的路缘石分割数据集来评估领先的基础模型。我们的结果显示,最先进的基础模型在路缘石分割方面面临着重大挑战。这是由于它们的精度和召回率较低,并且难以区分路缘石和其他类似物体或非路缘区域(如人行道)。此外,表现最佳的模型平均每段推理时间为3.70秒,这突显了提供实时辅助的问题。作为回应,我们提出了解决方案,包括过滤边界框选择以实现更准确的路缘石分割。总体而言,尽管基础模型具有即时灵活性,但将其应用于实际辅助技术应用仍需进一步完善。这项研究强调了为视障人士解决导航挑战所需的专门数据集和定制模型训练的重要性,并揭示了基础模型中存在的隐含弱点。

    关键词:辅助技术;路缘石分割;基础模型;户外导航;视觉障碍。

    关键词:基础模型; 空间危害; 路缘分割

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Assistive technology : the official journal of RESNA. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Assistive technology

    缩写:

    ISSN:1040-0435

    e-ISSN:1949-3614

    IF/分区:2.5/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Can foundation models reliably identify spatial hazards? A case study on curb segmentation