首页 正文

The New phytologist. 2025 Apr 16. doi: 10.1111/nph.70139 Q18.12024

Long-term trends in global flowering phenology

全球开花物候的长期变化趋势 翻译改进

David R Williamson  1, Tommy Prestø  1, Kristine B Westergaard  1, Beatrice M Trascau  1, Vibekke Vange  1, Kristian Hassel  1, Wouter Koch  2  3, James D M Speed  1

作者单位 +展开

作者单位

  • 1 Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, 7012, Norway.
  • 2 Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, 7012, Norway.
  • 3 Norwegian Biodiversity Information Centre, Trondheim, 7010, Norway.
  • DOI: 10.1111/nph.70139 PMID: 40241416

    摘要 中英对照阅读

    Flowering phenology is an indicator of the impact of climate change on natural systems. Anthropogenic climate change has progressed over more than two centuries, but ecological studies are mostly short in comparison. Here we harness the large-scale digitization of herbaria specimens to investigate temporal trends in flowering phenology at a global scale. We trained a convolutional neural network model to classify images of angiosperm herbarium specimens as being in flower or not in flower. This model was used to infer flowering across 8 million specimens spanning a century and global scales. We investigated temporal trends in mean flowering date and flowering season duration within ecoregions. We found high diversity of temporal trends in flowering seasonality across ecoregions with a median absolute shift of 2.5 d per decade in flowering date and 1.4 d per decade in flowering season duration. Variability in temporal trends in phenology was higher at low latitudes than at high latitudes. Our study demonstrates the value of digitized herbarium specimens for understanding natural dynamics in a time of change. The higher variability in phenological trends at low latitudes likely reflects the effects of a combination of shifts in temperature and precipitation seasonality, together with lower photoperiodic constraints to flowering.

    Keywords: angiosperm; collections; computer vision; convolutional neural network; herbaria; reproduction; seasonality.

    Keywords:long-term trends; global floweringphenology

    开花物候是气候变化对自然系统影响的一个指标。人为气候变暖已经持续了两个多世纪,但生态学研究大多时间较短。在这里,我们利用植物标本馆的大型数字化项目来调查全球范围内开花物候的时间趋势。我们训练了一个卷积神经网络模型,用于将被子植物标本图片分类为开花或未开花状态。该模型用来推断跨越一个世纪和全球范围内的800万份标本的开花情况。我们在生态区内研究了平均开花日期和开花季节持续时间的时间趋势。我们发现在不同生态区的开花季节性时间趋势存在高度多样性,中位数绝对变化为每十年2.5天的开花日期变化和1.4天的开花季节持续时间变化。低纬度地区的物候时间趋势的变化比高纬度地区更大。我们的研究证明了数字化标本在理解变革时期自然动态方面的价值。低纬度地区物候趋势较高的变异性可能是温度和降水季节性变化以及较低光照周期对开花限制共同作用的结果。

    关键词: 被子植物;收藏;计算机视觉;卷积神经网络;标本馆;繁殖;季节性。

    关键词:长期趋势; 全球开花物候学

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © The New phytologist. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:New phytologist

    缩写:NEW PHYTOL

    ISSN:0028-646X

    e-ISSN:1469-8137

    IF/分区:8.1/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Long-term trends in global flowering phenology