Objective: Prior work has demonstrated that AI access can help residents more accurately detect pediatric fractures. We wished to evaluate the effectiveness of an unsupervised AI-based training module as a pediatric fracture detection educational tool.
Materials and methods: Two hundred forty radiographic examinations from throughout the pediatric upper extremity were split into two groups of 120 examinations. A previously developed open-source deep learning fracture detection algorithm ( www.childfx.com ) was used to annotate radiographs. Four medical students and four PGY-2 radiology residents first evaluated 120 examinations for fracture without AI assistance and subsequently reviewed AI annotations on these cases via a training module. They then interpreted 120 different examinations without AI assistance. Pre- and post-intervention fracture detection accuracy was evaluated using a chi-squared test.
Results: Overall resident fracture detection accuracy significantly improved from 71.3% pre-intervention to 77.5% post-intervention (p = 0.032). Medical student fracture detection accuracy was not significantly changed from 56.3% pre-intervention to 57.3% post-intervention (p = 0.794). Eighty-eight percent of responding participants (7/8) would recommend this model of learning.
Conclusion: We found that a tailored AI-based training module increased resident accuracy for detecting pediatric fractures by 6.2%. Medical student accuracy was not improved, likely due to their limited background familiarity with the task. AI offers a scalable method for automatically generating annotated teaching cases covering varied pathology, allowing residents to efficiently learn from simulated experience.
Keywords: Artificial intelligence; Fracture; Medical education; Pediatric fracture; Resident education.
© 2025. The Author(s), under exclusive licence to International Skeletal Society (ISS).