首页 正文

Skeletal radiology. 2025 Apr 14. doi: 10.1007/s00256-025-04927-0 Q22.22024

AI as teacher: effectiveness of an AI-based training module to improve trainee pediatric fracture detection

基于人工智能的教学:人工智能培训模块改善儿科骨折检测的疗效研究 翻译改进

Sean O'Rourke  1, Sophia Xu  2, Stephanie Carrero  2, Harrison M Drebin  2, Ariel Felman  1, Andrew Ko  1, Adam Misseldine  1, Sofia G Mouchtaris  2, Brett Musialowicz  1, Tony T Wong  1, John R Zech  3

作者单位 +展开

作者单位

  • 1 Department of Radiology, Columbia University Irving Medical Center, 622 W 168 St, New York, NY, 10032, USA.
  • 2 Department of Medical Education, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
  • 3 Department of Radiology, Columbia University Irving Medical Center, 622 W 168 St, New York, NY, 10032, USA. jrzech@gmail.com.
  • DOI: 10.1007/s00256-025-04927-0 PMID: 40227327

    摘要 中英对照阅读

    Objective: Prior work has demonstrated that AI access can help residents more accurately detect pediatric fractures. We wished to evaluate the effectiveness of an unsupervised AI-based training module as a pediatric fracture detection educational tool.

    Materials and methods: Two hundred forty radiographic examinations from throughout the pediatric upper extremity were split into two groups of 120 examinations. A previously developed open-source deep learning fracture detection algorithm ( www.childfx.com ) was used to annotate radiographs. Four medical students and four PGY-2 radiology residents first evaluated 120 examinations for fracture without AI assistance and subsequently reviewed AI annotations on these cases via a training module. They then interpreted 120 different examinations without AI assistance. Pre- and post-intervention fracture detection accuracy was evaluated using a chi-squared test.

    Results: Overall resident fracture detection accuracy significantly improved from 71.3% pre-intervention to 77.5% post-intervention (p = 0.032). Medical student fracture detection accuracy was not significantly changed from 56.3% pre-intervention to 57.3% post-intervention (p = 0.794). Eighty-eight percent of responding participants (7/8) would recommend this model of learning.

    Conclusion: We found that a tailored AI-based training module increased resident accuracy for detecting pediatric fractures by 6.2%. Medical student accuracy was not improved, likely due to their limited background familiarity with the task. AI offers a scalable method for automatically generating annotated teaching cases covering varied pathology, allowing residents to efficiently learn from simulated experience.

    Keywords: Artificial intelligence; Fracture; Medical education; Pediatric fracture; Resident education.

    Keywords:AI based training; module; effectiveness; pediatric fracture detection

    目标: 先前的工作已经证明,AI访问可以帮助居民更准确地检测儿童骨折。我们希望评估一种无监督的基于AI的培训模块作为儿科骨折检测教育工具的有效性。

    材料和方法: 从整个儿科上肢放射成像检查中选取了240例,分成每组120例的两组。使用了一个之前开发的开源深度学习骨折检测算法()对影像进行标注。四位医学生和四位PGY-2放射学住院医师首先在没有AI辅助的情况下评估了120例检查中的骨折情况,然后通过培训模块审查了这些病例的AI注释。之后他们又在没有AI辅助的情况下解释了另外120个不同的案例。采用卡方检验评价干预前后的骨折检测准确性。

    结果: 总体而言,住院医生的骨折检测准确率从干预前的71.3%显著提高到了干预后的77.5%,差异具有统计学意义(p=0.032)。医学生的骨折检测准确率没有显著变化,即从干预前的56.3%到干预后的57.3%,差异不具统计学意义(p=0.794)。88%的参与者(7/8)推荐这种学习模式。

    结论: 我们发现,一个基于AI定制化的培训模块可以将住院医生检测儿童骨折的准确率提高6.2%。医学生的准确性没有得到改善,这可能是因为他们对该任务的背景知识有限。AI提供了一种可扩展的方法来自动生成涵盖各种病理状况的教学案例,使居民能够从模拟经验中有效学习。

    关键词: 人工智能;骨折;医学教育;儿童骨折;住院医生教育。

    关键词:基于人工智能的培训; 模块; 有效性; 儿科骨折检测

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Skeletal radiology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Skeletal radiology

    缩写:SKELETAL RADIOL

    ISSN:0364-2348

    e-ISSN:1432-2161

    IF/分区:2.2/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    AI as teacher: effectiveness of an AI-based training module to improve trainee pediatric fracture detection