首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

Review Annals of biomedical engineering. 2025 Apr 10. doi: 10.1007/s10439-025-03721-2 Q23.02024

Angiogenesis: Biological Mechanisms and In Vitro Models

血管生成:生物学机制和体外模型 翻译改进

Laura A E Brunmaier  1, Tugba Ozdemir  1, Travis W Walker  2

作者单位 +展开

作者单位

  • 1 Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
  • 2 Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA. travis.walker@sdsmt.edu.
  • DOI: 10.1007/s10439-025-03721-2 PMID: 40210793

    摘要 中英对照阅读

    The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.

    Keywords: Angiogenesis; Biomimetic; Microphysiological.

    Keywords:angiogenesis; biological mechanisms; in vitro models

    生物医学设备和药物研究的转化是一个成本高昂且耗时长的过程,获得FDA批准的概率较低。使用人类细胞开发具有生理相关性的体外模型不仅有助于提高FDA批准的可能性,还有助于以更简单的方式研究复杂的体内系统。尽管动物模型仍然是临床前测试的标准,但来自动物模型的数据在预测人体对临床试验的反应方面是不可靠的推断,从而导致转化率较低。在这篇综述中,我们重点关注体外血管或生成血管(angiogenic)模型,因为血管系统在生物医学研究的转化过程中发挥着渐进性的作用。本综述的第一部分讨论了最常用于体外实验以启动生成血管过程的生成血管细胞因子(angiogenic cytokines),随后是生成血管抑制剂(angiogenic inhibitors),其中发起者和抑制剂共同作用以维持血管稳态。接下来,我们评估之前发表的体外模型,在此过程中,我们评估捕捉物理环境以进行仿生体外建模的方法。这些主题提供了必须考虑的基本参数,以改善并实现血管仿生。最后,我们总结这些主题,建议一个前进的方向,旨在构建人类体外模型来模拟体内环境,并为生物医学设备和药物筛选提供平台,从而产生支持临床转化的数据。

    关键词: 生成血管;仿生学;微生理系统

    © 2025. 作者在Biomedical Engineering Society独家许可下保留所有权利。

    关键词:血管生成; 生物学机制; 体外模型

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Annals of biomedical engineering. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Annals of biomedical engineering

    缩写:ANN BIOMED ENG

    ISSN:0090-6964

    e-ISSN:1573-9686

    IF/分区:3.0/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Angiogenesis: Biological Mechanisms and In Vitro Models