首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

Biomechanics and modeling in mechanobiology. 2025 Apr 10. doi: 10.1007/s10237-025-01951-w Q23.02024

Mechanical characterization and constitutive law of porcine urethral tissues: a hyperelastic fiber model based on a physical approach

基于物理方法的猪尿道组织力学表征及本构模型研究 翻译改进

Quentin De Menech  1, Andres Osorio Salazar  2, Quentin Bourgogne  3  4, Yoan Civet  2, Adrien Baldit  3  4, Yves Perriard  2

作者单位 +展开

作者单位

  • 1 Integrated Actuators Laboratory (LAI), Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, 2002, Switzerland. quentin.demenech@epfl.ch.
  • 2 Integrated Actuators Laboratory (LAI), Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, 2002, Switzerland.
  • 3 ENIM, Université de Lorraine, Metz, 57000, France.
  • 4 Université de Lorraine, CNRS, LEM3, Metz, 57000, France.
  • DOI: 10.1007/s10237-025-01951-w PMID: 40208522

    摘要 中英对照阅读

    Lower urinary tract symptoms (LUTS), particularly urinary incontinence (UI), represent a significant global health challenge, affecting millions of patients worldwide. The artificial urinary sphincter (AUS) remains one of the most effective intervention for severe UI, with its design relying on a detailed understanding of the urethral biomechanics. Given the ethical and logistical constraints of using human tissue, porcine urethras, which share anatomical and mechanical similarities with human urethras, are widely employed in preclinical studies. This study investigates the uniaxial mechanical characterization of porcine urethral tissue under controlled conditions. Fresh porcine urethral samples were subjected to uniaxial tensile testing along both the longitudinal and circumferential directions to characterize their anisotropic mechanical properties. Experimental results were compared with existing datasets to validate findings. Additionally, conventional hyperelastic models were assessed to fit experimental results, and a novel anisotropic constitutive model with physical parameters was developed. This fiber model, which incorporates fiber modulus, volume, and orientation, uses a single set of parameters to predict behavior in both directions. It demonstrated improved accuracy, reaching the performance of the Gasser-Ogden-Holzapfel (GOH) model, with root mean square errors (RMSEs) of 9.24% and 12.98% in the circumferential and longitudinal directions, respectively. In contrast, the Yeoh and Ogden models were unable to fit both directions using a single set of parameters, yielding RMSEs values exceeding 30%. With its enhanced physical relevance, the fiber model having a more physical meaning holds promise for applications in the biomechanical analysis of fiber-composed soft tissues.

    Keywords: Anisotropy; Biomechanics; Ex vivo testing; Hyperelastic models; Urinary incontinence.

    Keywords:mechanical characterization; constitutive law; porcine urethral tissues; physical approach

    下尿路症状(LUTS),特别是尿失禁(UI),是全球性的健康挑战,影响着全世界数百万患者。人工尿道括约肌(AUS)仍然是治疗严重 UI 最有效的干预措施之一,其设计依赖于对尿道生物力学的深入理解。鉴于使用人体组织在伦理和物流方面的限制,猪尿道因其与人类尿道具有解剖学和机械相似性,在临床前研究中被广泛采用。本研究探讨了在受控条件下进行单轴拉伸试验来表征猪尿道组织的机械特性。对新鲜猪尿道样本进行了纵向和环向方向上的单轴拉伸测试,以表征其各向异性力学性能。实验结果与现有数据集进行了比较,以验证研究成果。此外,评估了传统的超弹性模型以拟合实验结果,并开发了一种具有物理参数的新颖各向异性本构模型。该纤维模型结合了纤维模量、体积和取向,使用一组参数即可预测两个方向的行为。其精度得到了提升,在径向和纵向上的均方根误差(RMSE)分别为 9.24% 和 12.98%,达到了 Gasser-Ogden-Holzapfel (GOH) 模型的性能水平。相比之下,Yeoh 和 Ogden 模型无法使用一组参数拟合两个方向的数据,其 RMSE 值超过 30%。由于其增强了物理相关性且具有更明确的物理意义,该纤维模型在纤维组成的软组织生物力学分析中显示出应用前景。

    关键词: 各向异性;生物力学;体外测试;超弹性模型;尿失禁。

    关键词:本构定律; 猪尿道组织; 超弹性纤维模型

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Biomechanics and modeling in mechanobiology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Biomechanics and modeling in mechanobiology

    缩写:BIOMECH MODEL MECHAN

    ISSN:1617-7959

    e-ISSN:1617-7940

    IF/分区:3.0/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Mechanical characterization and constitutive law of porcine urethral tissues: a hyperelastic fiber model based on a physical approach