The ADAPT-VQE algorithm is a promising method for generating a compact ansatz based on derivatives of the underlying cost function, and it yields accurate predictions of electronic energies for molecules. In this work, we report the implementation and performance of ADAPT-VQE with our recently developed sparse wave function circuit solver (SWCS) in terms of accuracy and efficiency for molecular systems with up to 52 spin orbitals. The SWCS can be tuned to balance computational cost and accuracy, which extends the application of ADAPT-VQE for molecular electronic structure calculations to larger basis sets and a larger number of qubits. Using this tunable feature of the SWCS, we propose an alternative optimization procedure for ADAPT-VQE to reduce the computational cost of the optimization. By preoptimizing a quantum simulation with a parametrized ansatz generated with ADAPT-VQE/SWCS, we aim to utilize the power of classical high-performance computing in order to minimize the work required on noisy intermediate-scale quantum hardware, which offers a promising path toward demonstrating quantum advantage for chemical applications.
Journal of chemical theory and computation. 2025 Apr 9. doi: 10.1021/acs.jctc.5c00150 Q25.72024
Classical Preoptimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications
经典预优化方法在ADAPT-VQE中的应用:最大化高性能计算资源潜力以改进化学应用的量子模拟 翻译改进
作者单位 +展开
作者单位
DOI: 10.1021/acs.jctc.5c00150 PMID: 40202103
摘要 中英对照阅读
Keywords:classical preoptimization; high-performance computing; quantum simulation; chemical applications
ADAPT-VQE算法是一种基于底层成本函数导数生成紧凑型电路的方法,它能为分子准确预测电子能量。在本工作中,我们报告了使用最近开发的稀疏波函数电路求解器(SWCS)实现和评估ADAPT-VQE在精度和效率方面的性能,涉及最多包含52个自旋轨道的分子系统。SWCS可以调整以平衡计算成本和准确性,这将ADAPT-VQE用于分子电子结构计算的应用范围扩展到更大的基组和更多的量子比特数量。利用SWCS的这一可调特性,我们提出了另一种优化方法来减少ADAPT-VQE中优化阶段的计算成本。通过预先使用参数化电路(由ADAPT-VQE/SWCS生成)进行量子模拟,我们的目标是利用经典高性能计算机的能力,以最小化在嘈杂中间尺度量子硬件上所需的工作量,这为化学应用展示了展示量子优势的一个有希望的方向。
相关内容
-
Ultra-fast processing of gigapixel Tissue MicroArray images using high performance computing
利用高性能计算快速处理组织芯片的十亿像素图像
Cellular oncology (Dordrecht, Netherlands). 2011 Oct;34(5):495-507.
-
High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies
高性能计算使全基因组关联研究中的较高阶单核苷酸多态性相互作用的详尽分析成为可能
Health information science and systems. 2015 Feb 24;3(Suppl 1 HISA Big Data in Biomedicine and Healthcare 2013 Con):S3.
-
Complex Linear Response Functions for a Multiconfigurational Self-Consistent Field Wave Function in a High Performance Computing Environment
基于高性能计算环境的多配置自洽场波函数的复线性响应函数
Journal of chemical theory and computation. 2023 Sep 12;19(17):5924-5937.
-
A method of biological pathway similarity search using high performance computing
基于高性能计算的生物通路相似性搜索方法研究
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2009:2009:4933-6.
-
Sign: large-scale gene network estimation environment for high performance computing
基于高性能计算的大规模基因网络估算环境
Genome informatics. International Conference on Genome Informatics. 2011;25(1):40-52.
-
Utilizing high performance computing for chemistry: parallel computational chemistry
利用高性能计算进行化学研究:并行计算化学
Physical chemistry chemical physics : PCCP. 2010 Jul 14;12(26):6896-920.
-
High performance computing environment for multidimensional image analysis
高性能计算环境在多维图像分析中的应用研究
BMC cell biology. 2007 Jul 10;8 Suppl 1(Suppl 1):S9.
-
A key player in high-performance computing
高性能计算的关键角色
Nature computational science. 2022 Apr;2(4):211-212.
-
Introduction to High-Performance Computing
高性能计算导论
Methods in molecular biology (Clifton, N.J.). 2024:2716:15-29.

期刊名:Journal of chemical theory and computation
缩写:J CHEM THEORY COMPUT
ISSN:1549-9618
e-ISSN:1549-9626
IF/分区:5.7/Q2