Postoperative insulin resistance (IR) is a metabolic disorder characterized by decreased insulin sensitivity and elevated blood glucose levels following major surgery. Our previous clinical study identified a notable correlation between postoperative IR and gut microbiota, particularly butyrate-producing bacteria, yet the mechanisms remain unclear. In this study, we established gastric resection SD rat models to evaluate the impact of Clostridium butyricum NCU-27 (butyrate-producing bacteria) on postoperative IR. The results demonstrated significant reductions in fasting blood glucose (FBG), fasting insulin (FIns) levels, and HOMA-IR (6.64 ± 0.76 vs. 11.47 ± 1.32; 4.27 ± 0.59 vs. 7.40 ± 0.54) in the postoperative period compared to the control group (P < 0.05). Additionally, glucose tolerance and hepatic glycogen content were markedly improved (P < 0.001). Further exploration of butyrate demonstrated effects similar to C. butyricum NCU-27, potentially mediated through the gut-liver axis by inhibiting mTORC1 expression in liver cells, activating the IRS1/AKT pathway, enhancing glucose uptake and glycogen synthesis, suppressing gluconeogenesis, increasing insulin sensitivity, and improving IR. Finally, the use of mTORC1 agonists and inhibitors further confirmed the critical role of the mTORC1 pathway in mediating the beneficial effects of C. butyricum NCU-27 and butyrate on postoperative IR. In conclusion, this study elucidated that C. butyricum NCU-27 improves postoperative IR by regulating butyrate metabolism and inhibiting the mTORC1 pathway, offering new insights for preventing and treating post-gastrectomy IR.
Keywords: Butyrate; Gut microbiota; Gut-liver axis; MTORC1; Postoperative insulin resistance.
Copyright © 2025 Elsevier GmbH. All rights reserved.