Integrated analysis of multimodal data offers a more comprehensive view for cancer survival prediction, yet it faces challenges like computational intensity, overfitting, and challenges in achieving a unified representation due to data heterogeneity. To address the above issues, the first Tucker decomposition multimodal fusion model was hereby proposed for pan-cancer survival prediction (TDMFS). The model employed Tucker decomposition to limit complex tensor parameters during fusion, achieving deep modality integration with reduced computational cost and lower overfitting risk. The individual modality-specific representations were then fully exploited by signal modulation mechanisms in a bilinear pooling decomposition to serve as complementary information for the deep fusion representation. Furthermore, the performance of TDMFS was evaluated using a 5-fold cross-validation method with two modal data, gene expression (GeneExpr), and copy number variation (CNV), for 33 cancers from The Cancer Genome Atlas (TCGA) database. The experiments demonstrated that the proposed TDMFS model achieved an average C-index of 0.757 across 33 cancer datasets, with a C-index exceeding 0.80 on 10 of these datasets. Survival curves for both high and low risk patients plotted on 27 cancer datasets were statistically significant. The TDMFS model demonstrated superior performance in survival prediction, outperforming models like LinearSum and Multimodal Factorisation Higher Order Pooling, making it a valuable asset for advancing clinical cancer research.
Keywords: Multimodal fusion; Pan-cancer; Survival prediction; Tucker decomposition.
Copyright © 2025 Elsevier B.V. All rights reserved.