首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

Acta applicandae mathematicae. 2025;196(1):4. doi: 10.1007/s10440-025-00717-x Q21.22024

[Formula: see text] Well-Posedness of Higher Order Hyperbolic Pseudo-Differential Equations with Multiplicities

带有多重性的高阶双曲型拟微分方程的“Well-Posedness”问题 翻译改进

Claudia Garetto  1, Bolys Sabitbek  2  3

作者单位 +展开

作者单位

  • 1 School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4UJ London, UK.
  • 2 School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK.
  • 3 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan.
  • DOI: 10.1007/s10440-025-00717-x PMID: 40028466

    摘要 Ai翻译

    In this paper, we study higher order hyperbolic pseudo-differential equations with variable multiplicities. We work in arbitrary space dimension and we assume that the principal part is time-dependent only. We identify sufficient conditions on the roots and the lower order terms (Levi conditions) under which the corresponding Cauchy problem is C well-posed. This is achieved via transformation into a first order system, reduction into upper-triangular form and application of suitable Fourier integral operator methods previously developed for hyperbolic non-diagonalisable systems. We also discuss how our result compares with the literature on second and third order hyperbolic equations.

    Keywords: Hyperbolic equations; Lower order terms; Multiplicities.

    Keywords:multiplicities well-posedness

    Copyright © Acta applicandae mathematicae. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Acta applicandae mathematicae

    缩写:ACTA APPL MATH

    ISSN:0167-8019

    e-ISSN:1572-9036

    IF/分区:1.2/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    [Formula: see text] Well-Posedness of Higher Order Hyperbolic Pseudo-Differential Equations with Multiplicities