首页 正文

Scientific data. 2025 Feb 25;12(1):331. doi: 10.1038/s41597-025-04642-4 Q16.92025

Endoscapes, a critical view of safety and surgical scene segmentation dataset for laparoscopic cholecystectomy

内窥景:腹腔镜胆囊切除术中安全及手术场景分割数据集的批判性研究 翻译改进

Pietro Mascagni  1  2, Deepak Alapatt  3, Aditya Murali  3, Armine Vardazaryan  4  3, Alain Garcia  5, Nariaki Okamoto  6, Guido Costamagna  5, Didier Mutter  4, Jacques Marescaux  6, Bernard Dallemagne  4  6, Nicolas Padoy  4  3

作者单位 +展开

作者单位

  • 1 IHU Strasbourg, Strasbourg, France. pietro.mascagni@ihu-strasbourg.eu.
  • 2 Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. pietro.mascagni@ihu-strasbourg.eu.
  • 3 ICube, University of Strasbourg, CNRS, Strasbourg, France.
  • 4 IHU Strasbourg, Strasbourg, France.
  • 5 Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • 6 IRCAD, Institute for Research against Digestive Cancer, Strasbourg, France.
  • DOI: 10.1038/s41597-025-04642-4 PMID: 40000637

    摘要 中英对照阅读

    Minimally invasive image-guided surgery heavily relies on vision. Deep learning models for surgical video analysis can support surgeons in visual tasks such as assessing the critical view of safety (CVS) in laparoscopic cholecystectomy, potentially contributing to surgical safety and efficiency. However, the performance, reliability, and reproducibility of such models are deeply dependent on the availability of data with high-quality annotations. To this end, we release Endoscapes2023, a dataset comprising 201 laparoscopic cholecystectomy videos with regularly spaced frames annotated with segmentation masks of surgical instruments and hepatocystic anatomy, as well as assessments of the criteria defining the CVS by three trained surgeons following a public protocol. Endoscapes2023 enables the development of models for object detection, semantic and instance segmentation, and CVS prediction, contributing to safe laparoscopic cholecystectomy.

    Keywords:surgical scene segmentation; laparoscopic cholecystectomy; Endoscapes; safetycritical view

    微创图像引导手术在很大程度上依赖于视觉。用于手术视频分析的深度学习模型可以支持外科医生进行视觉任务,例如评估腹腔镜胆囊切除术中的关键安全视图(CVS),这可能有助于提高手术的安全性和效率。然而,此类模型的性能、可靠性和可重复性在很大程度上取决于具有高质量注释的数据的可用性。为此,我们发布了Endoscapes2023,这是一个数据集,包括201个腹腔镜胆囊切除术视频,这些视频具有规则间隔的帧,并注释了手术器械和肝囊解剖的分割掩模,以及三名受过训练的外科医生根据公共协议对CVS定义标准的评估。Endoscapes2023能够开发用于对象检测、语义和实例分割以及CVS预测的模型,有助于安全腹腔镜胆囊切除术。© 2025. 作者。

    关键词:手术场景分割; 腹腔镜胆囊切除术; 内窥镜图像; 安全关键视图

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Scientific data. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Scientific data

    缩写:SCI DATA

    ISSN:N/A

    e-ISSN:2052-4463

    IF/分区:6.9/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Endoscapes, a critical view of safety and surgical scene segmentation dataset for laparoscopic cholecystectomy