首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

Energy & environmental science. 2025 Jan 7. doi: 10.1039/d4ee03445g Q132.42024

Deep learning for augmented process monitoring of scalable perovskite thin-film fabrication

基于深度学习的钙钛矿薄膜规模化加工的增强型过程监控技术 翻译改进

Felix Laufer  1, Markus Götz  2  3, Ulrich W Paetzold  1  4

作者单位 +展开

作者单位

  • 1 Light Technology Institute, Karlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany ulrich.paetzold@kit.edu.
  • 2 Scientific Computing Center (SCC), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany.
  • 3 Helmholtz AI Germany.
  • 4 Institute of Microstructure Technology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany.
  • DOI: 10.1039/d4ee03445g PMID: 39830789

    摘要 Ai翻译

    Reproducible large-area fabrication is one of the remaining challenges for the commercialization of perovskite photovoltaics. Imaging methods augmented with deep learning (DL) enable in-line detection of spatial or temporal inconsistencies and predict the impact of observed changes on device performance. In this work, we showcase three use cases of how DL augments complex experimental data analysis of the large-area perovskite thin film formation, even on moderate-sized datasets. First, we demonstrate material composition monitoring by differentiating between precursor property variations, ensuring material consistency during fabrication. Second, we provide early thin-film quality assessment by predicting holistic device performance even before its finalization. Finally, we extend the approach from parameter prediction to generating recommendations for process control by forecasting monitoring signals as a function of a variable process parameter and predicting the corresponding device performances. By addressing tasks that are hardly possible for humans to solve, we present how DL augments data analysis by transforming experimental data into predictions of target parameters.

    Keywords:deep learning; process monitoring; perovskite thin-film

    Copyright © Energy & environmental science. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Energy & environmental science

    缩写:ENERG ENVIRON SCI

    ISSN:1754-5692

    e-ISSN:1754-5706

    IF/分区:32.4/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Deep learning for augmented process monitoring of scalable perovskite thin-film fabrication