首页 正文

Clinical radiology. 2024 Oct 19:80:106731. doi: 10.1016/j.crad.2024.10.012 Q31.92025

Predictive ability of magnetic resonance imaging (MRI) for detecting prostate cancer and its clinical significance in MRI-targeted biopsy for prostate imaging reporting and data system (PI-RADS) ≥3 lesions

前列腺磁共振成像预测前列腺癌的诊断能力及其在PI-RADS≥3病变靶向活检中的临床意义 翻译改进

A Erkan  1, S G Gur Ozcan  2, M Erkan  2, D Barali  3, A Koc  3

作者单位 +展开

作者单位

  • 1 University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Urology, Bursa, Turkey. Electronic address: dr.anilerkan@hotmail.com.
  • 2 University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Radiology, Bursa, Turkey.
  • 3 University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Urology, Bursa, Turkey.
  • DOI: 10.1016/j.crad.2024.10.012 PMID: 39536595

    摘要 中英对照阅读

    Aim: Identifying the index lesion in prostate cancer (PCa) is vital for its treatment. Therefore, various coefficients and parameters are used to improve the diagnostic accuracy of magnetic resonance imaging (MRI). This study aimed to analyze MRI data, utilized as a triage test before prostate biopsy, to identify independent risk factors affecting negative biopsy results in PCa and investigate the ability of these factors to predict clinically significant and insignificant PCa (csPCa and ciPCa, respectively).

    Materials and methods: A retrospective analysis was conducted on data from 364 patients with a prostate imaging reporting and data system (PI-RADS) v2.1 score of 3 or higher, who underwent cognitive MRI-targeted biopsy (MRI-TB). Of the patients, 226 (62.1%) had benign lesions, 75 (20.6%) were diagnosed with ciPCa, and 63 (17.3%) with csPCa. The study assessed patients' demographic, biochemical, and radiologic characteristics, including apparent diffusion coefficient (ADC) and ADC coefficient of variation (ADCCoV) values.

    Results: The multivariate analysis performed to differentiate PCa from benign pathologies revealed that only MRI parameters, specifically the presence of PI-RADS 4 and 5 lesions (odds ratio [OR]: 12, p < 0.001 and OR: 73, p = 0.008, respectively), a lower ADC value (OR: 0.996, p = 0.041) and a higher ADCCoV value (OR: 1.07, p = 0.003) were independent risk factors. No MRI findings had significant predictive power for csPCa, with total prostate-specific antigen (PSA) (OR: 1.17, p = 0.019) found to be the only independent risk factor.

    Conclusion: The results of this study suggest that data obtained from MRI can predict PCa but not csPCa.

    Keywords:magnetic resonance imaging; prostate cancer; targeted biopsy

    目标: 在前列腺癌(PCa)的治疗中,识别索引病变至关重要。因此,使用各种系数和参数来提高磁共振成像(MRI)诊断准确性的方法多种多样。本研究旨在分析用于前列腺活检前筛选的MRI数据,以确定影响阴性活检结果的独立风险因素,并调查这些因素预测临床显著性和非显著性前列腺癌(csPCa和ciPCa)的能力。

    材料与方法: 对364名PI-RADS v2.1评分≥3且接受认知MRI靶向活检(MRI-TB)的患者的回顾性数据分析。其中,226名患者(62.1%)为良性病变,75名(20.6%)被诊断出非显著性前列腺癌(ciPCa),63名(17.3%)为显著性前列腺癌(csPCa)。研究评估了患者的临床、生化和影像学特征,包括表观扩散系数(ADC)及其变异系数值(ADCCoV)。

    结果: 多变量分析结果显示,区分前列腺癌与良性病理的独立风险因素仅为MRI参数:特别是PI-RADS 4和5病变的存在(OR:12, pCoV 值(OR:1.07, p=0.003)。没有MRI发现对预测csPCa具有显著的预测能力,总前列腺特异性抗原(PSA)(OR: 1.17, p = 0.019)是唯一独立的风险因素。

    结论: 本研究结果表明,从MRI获得的数据可以预测前列腺癌但不能预测临床显著性前列腺癌(csPCa)。

    关键词:磁共振成像; 前列腺癌; 靶向活检

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Clinical radiology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Clinical radiology

    缩写:CLIN RADIOL

    ISSN:0009-9260

    e-ISSN:1365-229X

    IF/分区:1.9/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Predictive ability of magnetic resonance imaging (MRI) for detecting prostate cancer and its clinical significance in MRI-targeted biopsy for prostate imaging reporting and data system (PI-RADS) ≥3 lesions