首页 正文

Environmental science & technology. 2024 Nov 12;58(45):19999-20008. doi: 10.1021/acs.est.4c06093 Q111.32024

Mapping Spatiotemporal Disparities in Residential Electricity Inequality Using Machine Learning

基于机器学习的居民电力不平等时空差异研究 翻译改进

Ying Yu  1, Xijing Li  2  3, Angel Hsu  1, Noah Kittner  4  3

作者单位 +展开

作者单位

  • 1 Data-Driven EnviroLab, Department of Public Policy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
  • 2 Department of Urban and Regional Planning, California State Polytechnic University Pomona, Pomona, California 91768, United States.
  • 3 Department of City and Regional Planning, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
  • 4 Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
  • DOI: 10.1021/acs.est.4c06093 PMID: 39473166

    摘要 中英对照阅读

    The move toward electrification is critical for decarbonizing the energy sector but may exacerbate energy unaffordability without proper safeguards. Addressing this challenge requires capturing neighborhood-scale dynamics to uncover the blind spots in residential electricity inequality. Based on publicly available, multisourced remote sensing and census data, we develop a high-resolution, spatiotemporally explicit machine learning (ML) framework to predict tract-level monthly electricity consumption across the conterminous U.S. from 2013-2020. We then construct the electricity affordability gap (EAG) metric, defined as the gap between electricity bills and 3% of household income, to better identify energy-vulnerable communities over space and time. The results show that our framework largely improves the resolution of electricity consumption data while achieving an R2 of 0.82 compared to the Low-Income Energy Affordability Data (LEAD). We estimate an annual $16.18 billion economic burden on the ability to afford electricity bills, exceeding current federal appropriations in alleviating energy difficulties. We also observe pronounced seasonal and urban-rural disparities, with monthly EAG in summer and winter being 2-3 times greater than other seasons and rural residents facing burdens up to 1.7 times higher than their urban counterparts. These insights inform equitable electrification by addressing spatiotemporal mismatches and multiple jurisdictional challenges in energy justice efforts.

    Keywords: equitable electrification; machine learning; residential electricity inequality; spatiotemporal disparities.

    Keywords:spatiotemporal disparities; machine learning

    转向电气化对于脱碳能源部门至关重要,但如果缺乏适当的保障措施,则可能会加剧能源的不可负担性。解决这一挑战需要捕捉邻里尺度的动力学变化,以揭示住宅电力不平等中的盲点。基于公开的多源遥感和人口普查数据,我们开发了一个高分辨率、时空明确的机器学习(ML)框架,用于预测2013年至2020年期间美国连续48州范围内每月的街区级用电量。然后构建了电费可负担缺口(EAG)指标,定义为电费与家庭收入的3%之间的差距,以更好地识别在空间和时间上易受能源影响的社区。结果表明,我们的框架显著提高了电力消耗数据的空间分辨率,并且相较于Low-Income Energy Affordability Data (LEAD),实现了0.82的R²值。我们估计每年由于电费负担能力而造成的经济负担为161.8亿美元,超过了目前联邦政府在缓解能源困难方面的拨款额度。此外,还观察到了明显的季节性和城乡差异,在夏季和冬季每月EAG比其他月份高出2至3倍,农村居民面临的负担可高达其城市同龄人的1.7倍。这些见解通过解决时空不匹配以及能效正义努力中的多管辖挑战来促进公平电气化。

    关键词: 公平电气化;机器学习;住宅电力不平等;时空差异。

    关键词:时空差异; 住宅用电不平等; 机器学习

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Environmental science & technology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Environmental science & technology

    缩写:ENVIRON SCI TECHNOL

    ISSN:0013-936X

    e-ISSN:1520-5851

    IF/分区:11.3/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Mapping Spatiotemporal Disparities in Residential Electricity Inequality Using Machine Learning