Defect detection from images is a crucial and challenging topic of industry scenarios due to the scarcity and unpredictability of anomalous samples. However, existing defect detection methods exhibit low detection performance when it comes to small-size defects. In this work, we propose a Cross-Attention Regression Flow (CARF) framework to model a compact distribution of normal visual patterns for separating outliers. To retain rich scale information of defects, we build an interactive cross-attention pattern flow module to jointly transform and align distributions of multi-layer features, which is beneficial for detecting small-size defects that may be annihilated in high-level features. To handle the complexity of multi-layer feature distributions, we introduce a layer-conditional autoregression module to improve the fitting capacity of data likelihoods on multi-layer features. By transforming the multi-layer feature distributions into a latent space, we can better characterize normal visual patterns. Extensive experiments on four public datasets and our collected industrial dataset demonstrate that the proposed CARF outperforms state-of-the-art methods, particularly in detecting small-size defects.
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. 2024:33:5183-5193. doi: 10.1109/TIP.2024.3457236
Cross-Attention Regression Flow for Defect Detection
交叉注意回归流缺陷检测方法 翻译改进
作者单位 +展开
作者单位
DOI: 10.1109/TIP.2024.3457236 PMID: 39283772
摘要 中英对照阅读
Keywords:defect detection
从图像中检测缺陷是工业场景中的一个关键且具有挑战性的课题,由于异常样本的稀少性和不可预测性。然而,现有的缺陷检测方法在处理小尺寸缺陷时表现较低。在这项工作中,我们提出了一种交叉注意力回归流(CARF)框架,用于建模正常视觉模式的紧凑分布以区分异常值。为了保留缺陷的丰富尺度信息,我们构建了一个交互式交叉注意模式流动模块,共同转换和对齐多层特征的分布,这对于检测可能在高级特征中被湮灭的小尺寸缺陷是有益的。为了解决多层特征分布的复杂性,我们引入了一种条件自回归模块以提高数据似然度在多层特征上的拟合能力。通过将多层特征分布转换到潜在空间中,我们可以更好地描述正常视觉模式。我们在四个公开的数据集和我们收集的工业数据集上进行了广泛的实验,结果表明提出的CARF方法优于现有的最先进的方法,特别是在检测小尺寸缺陷方面表现出色。
相关内容
-
Applications of flexible ultrasonic transducer array for defect detection at 150 °C
一种用于150°C缺陷检测的柔性超声阵列传感器及其应用研究
Sensors (Basel, Switzerland). 2013 Jan 15;13(1):975-83.
-
Detection of defects on the surface of a semiconductor by terahertz surface plasmon polaritons
基于太赫兹表面等离激元的半导体片表面缺陷检测研究
Applied optics. 2016 May 20;55(15):4139-44.
-
Dual-branch information extraction and local attention anchor-free network for defect detection
双重信息提取和局部注意力无锚网络缺陷检测方法
Scientific reports. 2024 May 13;14(1):10886.
-
Development of an Oxygen Sensitive Model Gel System to Detect Defects in Metal Oxide Coated Multilayer Polymeric Films
一种用于检测金属氧化物涂层多层聚合物膜缺陷的氧气敏感模型凝胶体系的研究与发展
Journal of food science. 2019 Sep;84(9):2507-2519.
-
[Defect detection using tumor markers]
基于肿瘤标志物的缺陷检测
Deutsche medizinische Wochenschrift (1946). 2002 Sep 27;127(39):2027; author reply 2027-8.
-
Enhanced Vision-Based Quality Inspection: A Multiview Artificial Intelligence Framework for Defect Detection
基于视觉的增强型质量检测:一种用于缺陷检测的多视角人工智能框架
Sensors (Basel, Switzerland). 2025 Mar 10;25(6):1703.
-
Enhanced Defect Detection in Carbon Fiber Reinforced Polymer Composites via Generative Kernel Principal Component Thermography
基于生成核主成分热图的碳纤维复合材料缺陷检测增强算法
Polymers. 2021 Mar 8;13(5):825.
-
A Dynamic Weights-Based Wavelet Attention Neural Network for Defect Detection
一种基于动态权重的小波注意力神经网络缺陷检测方法
IEEE transactions on neural networks and learning systems. 2023 Jul 12:PP.