The all-atomic full-dimensional-level simulations of nonadiabatic molecular dynamics (NAMD) in large realistic systems has received high research interest in recent years. However, such NAMD simulations normally generate an enormous amount of time-dependent high-dimensional data, leading to a significant challenge in result analyses. Based on unsupervised machine learning (ML) methods, considerable efforts were devoted to developing novel and easy-to-use analysis tools for the identification of photoinduced reaction channels and the comprehensive understanding of complicated molecular motions in NAMD simulations. Here, we tried to survey recent advances in this field, particularly to focus on how to use unsupervised ML methods to analyze the trajectory-based NAMD simulation results. Our purpose is to offer a comprehensive discussion on several essential components of this analysis protocol, including the selection of ML methods, the construction of molecular descriptors, the establishment of analytical frameworks, their advantages and limitations, and persistent challenges.
Review The journal of physical chemistry letters. 2024 Sep 26;15(38):9601-9619. doi: 10.1021/acs.jpclett.4c01751 Q24.92024
Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation
无监督机器学习在非绝热分子动力学模拟分析中的应用 翻译改进
作者单位 +展开
作者单位
DOI: 10.1021/acs.jpclett.4c01751 PMID: 39270134
摘要 中英对照阅读
Keywords:unsupervised machine learning
近年来,全原子多层次非绝热分子动力学(NAMD)在大型现实系统中的模拟引起了很高的研究兴趣。然而,这种NAMD模拟通常会产生大量的时变高维数据,导致结果分析面临重大挑战。基于无监督机器学习(ML)方法,人们投入了大量的努力来开发用于识别光诱导反应通道和全面理解复杂分子运动的新颖且易于使用的分析工具。在这里,我们试图回顾该领域的近期进展,特别是如何使用无监督ML方法来分析轨迹基础的NAMD模拟结果。我们的目的是对这一分析协议的几个重要组成部分进行全面讨论,包括选择机器学习方法、构建分子描述符、建立分析框架及其优缺点和持续面临的挑战。
关键词:无监督机器学习; 非绝热分子动力学模拟
相关内容
-
A Novel Application of Unsupervised Machine Learning and Supervised Machine Learning-Derived Radiomics in Anterior Cruciate Ligament Rupture
一种全新的无监督和有监督机器学习派生放射组学在前交叉韧带撕裂中的应用
Risk management and healthcare policy. 2021 Jun 23:14:2657-2664.
-
Reassessing acquired neonatal intestinal diseases using unsupervised machine learning
利用无监督机器学习重新评估新生儿获得性肠道疾病
Pediatric research. 2024 Feb 27.
-
Spherical-angular dark field imaging and sensitive microstructural phase clustering with unsupervised machine learning
球面角暗场成像与无监督机器学习的敏感微结构相簇分析
Ultramicroscopy. 2020 Dec:219:113132.
-
Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach
贝列琴斯基-科斯特利茨- Thouless相变的机器学习研究方法
Journal of physics. Condensed matter : an Institute of Physics journal. 2024 Jul 16;36(41).
-
Unsupervised Machine Learning in Pathology: The Next Frontier
病理学中的无监督机器学习:下一个前沿领域
Surgical pathology clinics. 2020 Jun;13(2):349-358.
-
Application of unsupervised machine learning to identify and characterise hydroxychloroquine misinformation on Twitter
无监督机器学习在识别和表征Twitter上羟氯喹错误信息中的应用
The Lancet. Digital health. 2021 Feb;3(2):e72-e75.
-
Exploring trends of nonmedical use of prescription drugs and polydrug abuse in the Twittersphere using unsupervised machine learning
基于无监督机器学习探索推特上关于处方药物非医疗使用及滥用的讨论特征
Addictive behaviors. 2017 Feb:65:289-295.
-
Enhancing Spectrometer Performance with Unsupervised Machine Learning
无监督机器学习在光谱仪性能提升中的应用研究
The journal of physical chemistry. B. 2024 Oct 24;128(42):10397-10407.