首页 正文

Scientific reports. 2024 Aug 22;14(1):19547. doi: 10.1038/s41598-024-70464-w Q13.92025

Development and validation of a predictive model for preoperative deep vein thrombosis following traumatic thoracolumbar fractures

创伤性胸腰椎骨折患者术后深静脉血栓预测模型的构建及验证 翻译改进

Jiangtao Ma  1, Miao Tian  1, Yanbin Zhu  1  2, Jinglve Hu  1  2  3, Yingze Zhang  4  5  6  7  8  9, Xiuting Li  10

作者单位 +展开

作者单位

  • 1 Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China.
  • 2 Orthopaedic Institution of Hebei Province, Shijiazhuang, 050051, Hebei, People's Republic of China.
  • 3 Hebei Orthopaedic Clinical Research Center, Hebei Medical University Third Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China.
  • 4 Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China. yzzhang111@126.com.
  • 5 Orthopaedic Institution of Hebei Province, Shijiazhuang, 050051, Hebei, People's Republic of China. yzzhang111@126.com.
  • 6 Hebei Orthopaedic Clinical Research Center, Hebei Medical University Third Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China. yzzhang111@126.com.
  • 7 Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, 050051, Hebei, People's Republic of China. yzzhang111@126.com.
  • 8 Chinese Academy of Engineering, Beijing, 100088, People's Republic of China. yzzhang111@126.com.
  • 9 NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China. yzzhang111@126.com.
  • 10 Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China. lixiuting2021@126.com.
  • DOI: 10.1038/s41598-024-70464-w PMID: 39174790

    摘要 中英对照阅读

    Although a sequential work-up for deep vein thrombosis has reached agreement worldwide, the mysterious nature of DVT following fractures brings challenges to early diagnosis and intervention. The objective of the present study was to develop and validate a nomogram for predicting preoperative DVT risk in patients with thoracolumbar fractures using readily available clinical data. Of the 1350 patients, 930 were randomly assigned to the training cohort. A prediction model was established and visualized as a nomogram based on eight predictors related to preoperative DVT. The performance of the model was tested by the receiver operating characteristic curve, Hosmer-Lemeshow test, calibration curve, and decision curve analysis. We further verified the model in the validation cohort. The AUCs of the prediction model were 0.876 and 0.853 in training and validation cohorts, respectively. The Hosmer-Lemeshow test demonstrated good fitness in the training set (X2 = 5.913, P = 0.749) and the validation set (X2 = 9.460, P = 0.396). Calibration and decision curve analyses performed well in training and validation sets. In short, we developed a prediction model for preoperative DVT risk in patients with thoracolumbar fractures and verified its accuracy and clinical utility.

    Keywords:predictive model; deep vein thrombosis; traumatic thoracolumbar fractures

    尽管对于深静脉血栓形成(DVT)的顺序检查方法已经在全球范围内达成一致,但骨折后出现的 DVT 的神秘性质给早期诊断和干预带来了挑战。本研究的目标是利用现有的临床数据为胸腰椎骨折患者术前 DVT 风险建立并验证一个评分系统(nomogram)。在 1350 名患者中,930 名被随机分配到训练组。基于八个与术前 DVT 相关的预测因素建立了预测模型,并以 nomogram 的形式可视化。通过受试者工作特征曲线、Hosmer-Lemeshow 检验、校准曲线和决策曲线分析来测试该模型的表现。进一步在验证组中对模型进行了验证。训练组和验证组中的预测模型的曲线下面积(AUC)分别为 0.876 和 0.853。Hosmer-Lemeshow 检验显示,训练集 (X2=5.913, P=0.749) 和验证集 (X2=9.460, P=0.396) 的适应性良好。训练组和验证组的校准曲线分析和决策曲线分析表现优异。简而言之,我们为胸腰椎骨折患者术前 DVT 风险建立了预测模型,并证实了其准确性和临床实用性。

    © 2024. The Author(s).

    关键词:预测模型; 深静脉血栓; 创伤性胸腰椎骨折

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Scientific reports. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Scientific reports

    缩写:SCI REP-UK

    ISSN:2045-2322

    e-ISSN:2045-2322

    IF/分区:3.9/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Development and validation of a predictive model for preoperative deep vein thrombosis following traumatic thoracolumbar fractures