首页 正文

Journal of environmental management. 2024 Feb 14:352:120078. doi: 10.1016/j.jenvman.2024.120078 Q18.42025

Machine learning-based techniques for land subsidence simulation in an urban area

基于机器学习的都市地区土地沉降模拟技术 翻译改进

Jianxin Liu  1, Wenxiang Liu  2, Fabrice Blanchard Allechy  3, Zhiwen Zheng  4, Rong Liu  5, Kouao Laurent Kouadio  6

作者单位 +展开

作者单位

  • 1 School of Geosciences and Info-physics, Central South University, Changsha, Hunan, 410083, China; Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha, Hunan, 410083, China. Electronic address: ljx@csu.edu.cn.
  • 2 School of Geosciences and Info-physics, Central South University, Changsha, Hunan, 410083, China; Guangdong Geological Bureau, Guangzhou, Guangdong, 510700, China. Electronic address: liuwenxiang@csu.edu.cn.
  • 3 UFR des Sciences de la Terre et des Ressources Minières, Université Félix Houphouët-Boigny, Abidjan, 22 BP 582 Abidjan 22, Côte d'Ivoire; Agricultural Research Centre for International Development (CIRAD), Montpellier, Occitanie, 34170, France. Electronic address: Blanchard_fabrice.allechy@cirad.fr.
  • 4 Guangdong Geological Environment Monitoring Station, Guangzhou, Guangdong, 510599, China. Electronic address: 13539770009@163.com.
  • 5 School of Geosciences and Info-physics, Central South University, Changsha, Hunan, 410083, China; Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha, Hunan, 410083, China. Electronic address: liurongkaoyan@csu.edu.cn.
  • 6 School of Geosciences and Info-physics, Central South University, Changsha, Hunan, 410083, China; Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha, Hunan, 410083, China; UFR des Sciences de la Terre et des Ressources Minières, Université Félix Houphouët-Boigny, Abidjan, 22 BP 582 Abidjan 22, Côte d'Ivoire. Electronic address: lkouao@csu.edu.cn.
  • DOI: 10.1016/j.jenvman.2024.120078 PMID: 38232594

    摘要 Ai翻译

    Understanding and mitigating land subsidence (LS) is critical for sustainable urban planning and infrastructure management. We introduce a comprehensive analysis of LS forecasting utilizing two advanced machine learning models: the eXtreme Gradient Boosting Regressor (XGBR) and Long Short-Term Memory (LSTM). Our findings highlight groundwater level (GWL) and building concentration (BC) as pivotal factors influencing LS. Through the use of Taylor diagram, we demonstrate a strong correlation between both XGBR and LSTM models and the subsidence data, affirming their predictive accuracy. Notably, we applied delta-rate (Δr) calculus to simulate a scenario with an 80% reduction in GWL and BC impact, revealing a potential substantial decrease in LS by 2040. This projection emphasizes the effectiveness of strategic urban and environmental policy interventions. The model performances, indicated by coefficients of determination R2 (0.90 for XGBR, 0.84 for LSTM), root-mean-squared error RMSE (0.37 for XGBR, 0.50 for LSTM), and mean-absolute-error MAE (0.34 for XGBR, 0.67 for LSTM), confirm their reliability. This research sets a precedent for incorporating dynamic environmental factors and adapting to real-time data in future studies. Our approach facilitates proactive LS management through data-driven strategies, offering valuable insights for policymakers and laying the foundation for sustainable urban development and resource management practices.

    Keywords: Environmental risk assessment; Groundwater impact modeling; Land subsidence; Machine learning.

    Keywords:land subsidence simulation; urban area

    Copyright © Journal of environmental management. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of environmental management

    缩写:J ENVIRON MANAGE

    ISSN:0301-4797

    e-ISSN:1095-8630

    IF/分区:8.4/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Machine learning-based techniques for land subsidence simulation in an urban area