首页 正文

The Science of the total environment. 2024 Jan 15:908:168168. doi: 10.1016/j.scitotenv.2023.168168 Q18.02025

Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity

解释性机器学习模型在离子液体毒性预测中的应用 翻译改进

Dingchao Fan  1, Ke Xue  1, Runqi Zhang  1, Wenguang Zhu  1, Hongru Zhang  1, Jianguang Qi  1, Zhaoyou Zhu  1, Yinglong Wang  2, Peizhe Cui  1

作者单位 +展开

作者单位

  • 1 College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China.
  • 2 College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China. Electronic address: wangyinglong@qust.edu.cn.
  • DOI: 10.1016/j.scitotenv.2023.168168 PMID: 37918734

    摘要 Ai翻译

    With the wide application prospect of ionic liquids (ILs) as solvent in the future industry, in order to promote green and sustainable chemical engineering, the toxicity problem of common concern has been systematically modeled. Machine learning has promoted the development of chemical property prediction model with its powerful data processing ability. Two typical ensemble learning models, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), were u... ...点击完成人机验证后继续浏览
    Copyright © The Science of the total environment. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Science of the total environment

    缩写:SCI TOTAL ENVIRON

    ISSN:0048-9697

    e-ISSN:1879-1026

    IF/分区:8.0/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity