首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

International journal of bioprinting. 2023 Jun 12;9(5):770. doi: 10.18063/ijb.770 Q16.82024

Micron track chitosan conduit fabricated by 3D-printed model topography provides bionic microenvironment for peripheral nerve regeneration

微米级凹槽壳聚糖导管促进周围神经再生的仿生微环境的研究 翻译改进

Meng Zhang  1, Heng An  2, Teng Wan  1, Hao-Ran Jiang  1, Ming Yang  1, Yong-Qiang Wen  2, Pei-Xun Zhang  1

作者单位 +展开

作者单位

  • 1 Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
  • 2 Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
  • DOI: 10.18063/ijb.770 PMID: 37608847

    摘要 中英对照阅读

    The micron track conduit (MTC) and nerve factor provide a physical and biological model for simulating peripheral nerve growth and have potential applications for nerve injury. However, it has rarely been reported that they synergize on peripheral nerves. In this study, we used bioderived chitosan as a substrate to design and construct a neural repair conduit with micron track topography using threedimensional (3D) printing topography. We loaded the MTC with neurotrophin-3 (NT-3) to promote the regeneration of sensory and sympathetic neurons in the peripheral nervous system. We found that the MTC@NT3 composite nerve conduit mimicked the microenvironment of peripheral nerves and promoted axonal regeneration while inducing the targeted growth of Schwann cells, which would promote functional recovery in rats with peripheral nerve injury. Artificial nerve implants with functional properties can be developed using the strategy presented in this study.

    Keywords: 3D printing; Long-distance injury; Micron track conduit; Neurotrophin-3; Peripheral nerve regeneration;.

    Keywords:micron track; chitosan conduit; 3D-printed model; topography; bionic microenvironment

    微米轨道导管(MTC)和神经因子为模拟周围神经生长提供了一个物理和生物模型,并在神经损伤方面具有潜在的应用。然而,很少有报道称它们在周围神经上协同作用。在这项研究中,我们使用生物衍生的壳聚糖作为基质,使用三维(3D)打印形貌设计和构建了具有微米轨迹形貌的神经修复导管。我们在MTC中加载了神经营养因子-3(NT-3),以促进外周神经系统中感觉和交感神经元的再生。我们发现MTC@NT3复合神经导管模拟周围神经的微环境,促进轴突再生,同时诱导雪旺氏细胞的靶向生长,这将促进周围神经损伤大鼠的功能恢复。采用本研究提出的策略,可以开发出具有功能特性的人工神经植入物。关键词:3D打印;远距离伤害;微米轨道导管;神经营养素-3;周围神经再生;。版权所有:©2023,张敏,安,万,等。

    关键词:微米级轨道; 壳聚糖导管; 3D打印模型; 拓扑结构; 仿生微环境

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of bioprinting. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of bioprinting

    缩写:

    ISSN:2424-7723

    e-ISSN:2424-8002

    IF/分区:6.8/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Micron track chitosan conduit fabricated by 3D-printed model topography provides bionic microenvironment for peripheral nerve regeneration