Nature communications. 2023 Jun 10;14(1):3430. doi: 10.1038/s41467-023-38556-9 Q115.72025
Exciton transport in atomically thin semiconductors
原子薄半导体中的激子输运 翻译改进
Ermin Malic 1, Raül Perea-Causin 2, Roberto Rosati 3, Daniel Erkensten 2, Samuel Brem 3
作者单位 +展开
作者单位
DOI: 10.1038/s41467-023-38556-9 PMID: 37301820
摘要 Ai翻译
相关内容
-
Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors
使用原子级薄半导体的可扩展光 fibers 功能化 请注意,尽管"fibers"在原文中指的是"optical fibers"(光学纤维),但在翻译的过程中,“光fibers”并不是一个常用的表达方式。正确的翻译应该是“光纤”。因此,更正后的答案是: 使用原子级薄半导体的可扩展光纤功能化
Gia Quyet Ngo et al.
Advanced materials (Deerfield Beach, Fla.). 2020 Nov;32(47):e2003826.
-
Reconfigurable Local Photoluminescence of Atomically-Thin Semiconductors via Ferroelectric-Assisted Effects
铁电效应辅助的原子薄半导体局域光致发光的重构现象
Changhyun Ko
Nanomaterials (Basel, Switzerland). 2019 Nov 15;9(11):1620.
-
Giant Faraday rotation in atomically thin semiconductors
原子薄半导体中的巨法拉第旋转效应
Benjamin Carey et al.
Nature communications. 2024 Apr 10;15(1):3082.
-
Bridging the gap between atomically thin semiconductors and metal leads
原子薄半导体与金属引线的连接
Xiangbin Cai et al.
Nature communications. 2022 Apr 1;13(1):1777.
-
Phonon Screening of Excitons in Atomically Thin Semiconductors
原子薄半导体中声子对激子的屏效作用研究
Woncheol Lee et al.
Physical review letters. 2024 Nov 15;133(20):206901.
-
Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors
合成原子薄半导体中的过渡金属替代掺杂
Jian Gao et al.
Advanced materials (Deerfield Beach, Fla.). 2016 Nov;28(44):9735-9743.
-
Dark exciton anti-funneling in atomically thin semiconductors
原子薄半导体中的暗激子反隧穿效应
Roberto Rosati et al.
Nature communications. 2021 Dec 10;12(1):7221.
-
Efficient Quadrature Squeezing from Biexcitonic Parametric Gain in Atomically Thin Semiconductors
原子薄半导体中双激子参量放大的高效四极挤压
Emil V Denning et al.
Physical review letters. 2022 Aug 26;129(9):097401.