首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

Epidemics. 2022 Jun:39:100574. doi: 10.1016/j.epidem.2022.100574 Q33.02024

Complex model calibration through emulation, a worked example for a stochastic epidemic model

基于传染病模型的复杂模型校准及其模拟实例研究 翻译改进

Michael Dunne  1, Hossein Mohammadi  1, Peter Challenor  1, Rita Borgo  2, Thibaud Porphyre  3, Ian Vernon  4, Elif E Firat  5, Cagatay Turkay  6, Thomas Torsney-Weir  7, Michael Goldstein  4, Richard Reeve  8, Hui Fang  9, Ben Swallow  10

作者单位 +展开

作者单位

  • 1 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.
  • 2 Department of Informatics, King's College London, London, UK.
  • 3 Laboratoire de Biométrie et Biologie Evolutive, VetAgro Sup, Marcy l'Etoile, France.
  • 4 Department of Mathematical Sciences, Durham University, Durham, UK.
  • 5 Department of Computer Science, University of Nottingham, Nottingham, UK.
  • 6 Centre for Interdisciplinary Methodologies, University of Warwick, Coventry, UK.
  • 7 VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria.
  • 8 Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
  • 9 Department of Computer Science, Loughborough University, Loughborough, UK.
  • 10 School of Mathematics and Statistics, University of Glasgow, Glasgow, UK. Electronic address: ben.swallow@glasgow.ac.uk.
  • DOI: 10.1016/j.epidem.2022.100574 PMID: 35617882

    摘要 Ai翻译

    Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.

    Keywords: Calibration; History matching; SEIR; Stochastic epidemic model; Uncertainty quantification.

    Keywords:model calibration; emulation; stochastic epidemic model

    Copyright © Epidemics. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Epidemics

    缩写:EPIDEMICS-NETH

    ISSN:1755-4365

    e-ISSN:1878-0067

    IF/分区:3.0/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Complex model calibration through emulation, a worked example for a stochastic epidemic model