首页 正文

Journal of chemical information and modeling. 2016 Jan 25;56(1):12-20. doi: 10.1021/acs.jcim.5b00332 Q15.32025

Feasibility of Active Machine Learning for Multiclass Compound Classification

多类化合物分类中主动机器学习的可行性研究 翻译改进

Tobias Lang, Florian Flachsenberg, Ulrike von Luxburg  1, Matthias Rarey

作者单位 +展开

作者单位

  • 1 Department of Computer Science, University of Tübingen , 72076 Tübingen, Germany.
  • DOI: 10.1021/acs.jcim.5b00332 PMID: 26740007

    摘要 Ai翻译

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper ... ...点击完成人机验证后继续浏览
    Copyright © Journal of chemical information and modeling. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of chemical information and modeling

    缩写:J CHEM INF MODEL

    ISSN:1549-9596

    e-ISSN:1549-960X

    IF/分区:5.3/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Feasibility of Active Machine Learning for Multiclass Compound Classification