首页 正文

Health economics review. 2016 Dec;6(1):56. doi: 10.1186/s13561-016-0134-2 Q22.72024

Structural equation modeling for decomposing rank-dependent indicators of socioeconomic inequality of health: an empirical study

基于秩的健康社会经济不平等指标的结构方程模型分解研究 翻译改进

Roselinde Kessels  1, Guido Erreygers  2

作者单位 +展开

作者单位

  • 1 Department of Economics, University of Antwerp and Flemish Research Foundation (FWO), City Campus, Prinsstraat 13, Antwerp, 2000, Belgium. roselinde.kessels@uantwerpen.be.
  • 2 Department of Economics, University of Antwerp and Centre for Health Policy, University of Melbourne, City Campus, Prinsstraat 13, Antwerp, 2000, Belgium.
  • DOI: 10.1186/s13561-016-0134-2 PMID: 27928784

    摘要 Ai翻译

    We present a flexible structural equation modeling (SEM) framework for the regression-based decomposition of rank-dependent indicators of socioeconomic inequality of health and compare it with simple ordinary least squares (OLS) regression. The SEM framework forms the basis for a proper use of the most prominent one- and two-dimensional decompositions and provides an argument for using the bivariate multiple regression model for two-dimensional decomposition. Within the SEM framework, the two-dimensional decomposition integrates the feedback mechanism between health and socioeconomic status and allows for different sets of determinants of these variables. We illustrate the SEM approach and its outperformance of OLS using data from the 2011 Ethiopian Demographic and Health Survey.

    Keywords: Decomposition methods; Generalized health Concentration Index; Inequality measurement; Structural Equation Modeling.

    Keywords:structural equation modeling

    关键词:结构方程模型

    Copyright © Health economics review. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Health economics review

    缩写:

    ISSN:2191-1991

    e-ISSN:

    IF/分区:2.7/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Structural equation modeling for decomposing rank-dependent indicators of socioeconomic inequality of health: an empirical study