首页 正文

The plant genome. 2010;3(2):106-116. doi: 10.3835/plantgenome2010.04.0005 Q13.82025

Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R

基于分子标记和家系谱的基因组预测使用R语言中的Bayesian线性回归软件包 翻译改进

Paulino Pérez  1, Gustavo de Los Campos, José Crossa, Daniel Gianola

作者单位 +展开

作者单位

  • 1 P. Pérez, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México D.F., México, and Colegio de Postgraduados, Km. 36.5 Carretera México, Texcoco, Montecillo, Estado de México, 56230, México; G. de los Campos, Section on Statistical Genetics, Biostatistics, Univ. of Alabama at Birmingham, 1665 University Blvd., Ryals Public Health Building 414, Birmingham, AL 35294; J. Crossa, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México D.F., México; D. Gianola, Univ. of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706.
  • DOI: 10.3835/plantgenome2010.04.0005 PMID: 21566722

    摘要 Ai翻译

    The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The R-package BLR (Bayesian Linear Regression) implements several statistical procedures (e.g., Bayesian Ridg... ...点击完成人机验证后继续浏览
    Copyright © The plant genome. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Plant genome

    缩写:PLANT GENOME-US

    ISSN:N/A

    e-ISSN:1940-3372

    IF/分区:3.8/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R