首页 正文

Comparative Study Bioinformatics (Oxford, England). 2004 Jul 22;20(11):1728-36. doi: 10.1093/bioinformatics/bth158 Q15.42025

Robust PCA and classification in biosciences

稳健的PCA和生物科学中的分类问题 翻译改进

Mia Hubert  1, Sanne Engelen

作者单位 +展开

作者单位

  • 1 Department of Mathematics, Katholieke Universiteit Leuven, W. De Croylaan 54, B-3001 Leuven, Belgium. Mia.Hubert@wis.kuleuven.ac.be
  • DOI: 10.1093/bioinformatics/bth158 PMID: 14988110

    摘要 Ai翻译

    Motivation: Principal components analysis (PCA) is a very popular dimension reduction technique that is widely used as a first step in the analysis of high-dimensional microarray data. However, the classical approach that is based on the mean and the sample covariance matrix of the data is very sensitive to outliers. Also, classification methods based on this covariance matrix do not give good results in the presence of outlying measurements.

    Results: First, we propose a robust PCA (ROBPCA) method for high-dimensional data. It combines projection-pursuit ideas with robust estimation of low-dimensional data. We also propose a diagnostic plot to display and classify the outliers. This ROBPCA method is applied to several bio-chemical datasets. In one example, we also apply a robust discriminant method on the scores obtained with ROBPCA. We show that this combination of robust methods leads to better classifications than classical PCA and quadratic discriminant analysis.

    Availability: All the programs are part of the Matlab Toolbox for Robust Calibration, available at http://www.wis.kuleuven.ac.be/stat/robust.html.

    Keywords:biosciences; classification

    关键词:生物科学; 分类学

    Copyright © Bioinformatics (Oxford, England). 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Bioinformatics

    缩写:BIOINFORMATICS

    ISSN:1367-4803

    e-ISSN:1367-4811

    IF/分区:5.4/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Robust PCA and classification in biosciences