首页 正文

Journal of neurotrauma. 2001 Apr;18(4):369-76. doi: 10.1089/089771501750170912 Q13.82024

Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats

药物抑制聚(ADP-核糖)聚合酶可保护脑外伤后的神经细胞 翻译改进

M C LaPlaca  1, J Zhang, R Raghupathi, J H Li, F Smith, F M Bareyre, S H Snyder, D I Graham, T K McIntosh

作者单位 +展开

作者单位

  • 1 Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA. michelle.laplaca@bme.gatech.edu
  • DOI: 10.1089/089771501750170912 PMID: 11336438

    摘要 Ai翻译

    The nuclear enzyme poly(ADP-ribose) polymerase (PARP), which has been shown to be activated following experimental traumatic brain injury (TBI), binds to DNA strand breaks and utilizes nicotinamide adenine dinucleotide (NAD) as a substrate. Since consumption of NAD may be deleterious to recovery in the setting of CNS injury, we examined the effect of a potent PARP inhibitor, GPI 6150, on histological outcome following TBI in the rat. Rats (n = 16) were anesthetized, received a preinjury dose of GPI 6150 (30 min; 15 mg/kg, i.p.), subjected to lateral fluid percussion (FP) brain injury of moderate severity (2.5-2.8 atm), and then received a second dose 3 h postinjury (15 mg/kg, i.p.). Lesion area was examined using Nissl staining, while DNA fragmentation and apoptosis-associated cell death was assessed with terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labeling (TUNEL) with stringent morphological evaluation. Twenty-four hours after brain injury, a significant cortical lesion and number of TUNEL-positive/nonapoptotic cells and TUNEL-positive/apoptotic cells in the injured cortex of vehicle-treated animals were observed as compared to uninjured rats. The size of the trauma-induced lesion area was significantly attenuated in the GPI 6150-treated animals versus vehicle-treated animals (p < 0.05). Treatment of GPI 6150 did not significantly affect the number of TUNEL-positive apoptotic cells in the injured cortex. The observed neuroprotective effects on lesion size, however, offer a promising option for further evaluation of PARP inhibition as a means to reduce cellular damage associated with TBI.

    Keywords:neuroprotective; trumatic brain injury

    Copyright © Journal of neurotrauma. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of neurotrauma

    缩写:J NEUROTRAUM

    ISSN:0897-7151

    e-ISSN:1557-9042

    IF/分区:3.8/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats